0
17 years of experience17 years of Excellence
SUBJECTS
ADV. SEARCH
Indian Books on Discounts
  Kreyszig`s Applied Mathematics - II
 

Kreyszig`S Applied Mathematics - Ii

by Wiley India Editorial

  Price : Rs 609.00
  Your Price : Rs 517.65
Discount
15
In Stock
  This version of Advanced Engineering Mathematics by Prof. Erwin Kreyszig is globally the most popular textbook on the subject and is restructured to the present content in a concise and easy-to-understand manner. It fulfills the need for a book that not only effectively explains the concepts but also aids in visualizing the underlying geometric interpretation. Every chapter has easy to follow explanation of the theory and numerous step-by-step solved problems and examples. The questions have been hand-picked to suit the current pattern of questions asked. Extreme care has been taken to provide careful and correct mathematics, outstanding exercises.

Theory of Equations

Laplace transforms and its Application

Differential Equations of First Order

Second and Higher Order Differential Equations

Vector Calculus

Table of Contents

Preface

Chapter 1 Theory of Equations

1.1 Introduction
1.2 Polynomial
1.3 General Equation
1.4 Degree of an Equation
1.5 Roots of an Equation
1.6 Important Theorems
1.7 Synthetic Division Method
1.8 Fundamental Theorem of Algebra
1.9 Relation between Roots and Coefficients of an Equation
1.10 Reciprocal Equation (RE)
1.11 Transformation of Equations
1.12 Beta and Gamma Functions

Chapter 2 Laplace transforms and it’s Application

2.1 Introduction
2.2 Laplace Transforms: Basic Concepts
2.3 Laplace Transform of Elementary Functions (by Direct Application of Definition)
2.4 Properties of Laplace Transforms
2.5 Laplace Transform of Multiplication of a Function f (t) by t
2.6 Laplace Transform of Division of a Function f (t) by t
2.7 Laplace Transform of Derivative of a Function f (t)
2.8 Laplace Transform of an Integral
2.9 Laplace Transform of Periodic Functions
2.10 Evaluate the Integrals using Laplace Transform
2.11 Inverse Laplace Transform
2.12 Inverse Transform of Logarithmic and Trigonometric Functions
2.13 Inverse Transform using Integration
2.14 Partial Fraction Method to Find the Inverse Laplace Transform
2.15 The Convolution Theorem
2.16 Some Special Functions and Their Laplace Transforms
2.17 Solution of Differential Equations with Laplace Transform
2.18 Differential Equation (IVPs) with Variable Coefficients
2.19 Solution of Simultaneous Linear Differential Equations

Chapter 3 Differential Equations of First Order

3.1 Introduction
3.2 Some Important Definitions
3.3 Formation of Differential Equation (First Order and First Degree)
3.4 Solution of Differential Equations (First Order and First Degree)
3.5 Methods to Solve Differential Equations (First Order and First Degree)
3.6 Differential Equations Reducible to Exact Form (Integrating Factors)
3.7 Linear Ordinary Differential Equations
3.8 Applications of Differential Equations

Chapter 4 Second and Higher Order Differential Equations

4.1 Introduction
4.2 Linear Differential Equations
4.3 Homogeneous Linear Differential Equations of Second Order with Constant Coefficients
4.4 Higher Order Linear Homogeneous Differential Equations
4.5 Non-Homogeneous Linear Differential Equations with Constant Coefficients
4.6 Differential Equations with Variable Coefficients Reducible to DE with Constant Coefficients
4.7 Method of Variation of Parameters
4.8 Method of Undetermined Coefficients (to find the Particular Integral)
4.9 Simultaneous Linear Differential Equations
4.10 Application to Bending of Beams
4.11 Application to Simple Electric Circuits
4.12 Simple Harmonic Motion

Chapter 5 Vector Calculus

5.1 Introduction
5.2 Vector Algebra
5.3 Differentiation of a Vector
5.4 Gradient of a Scalar Field. Directional Derivative
5.5 Angle of Intersection of Two Surfaces
5.6 Divergence of a Vector Field
5.7 Curl of a Vector Field
5.8 Solenoidal and Irrotational Vectors
5.9 Line Integrals
5.10 Path Independence of line Integrals
5.11 Green’s Theorem in the Plane
5.12 Surfaces for Surfaces Integrals
5.13 Surface integrals
5.14 Stokes’s Theorem
5.15 Triple Integrals. Divergence Theorem of Gauss

Important Points and Formulas

Exercises

AnswersISBN - 9788126553754
 


Pages : 462
Credit Cards
Payment accepted by All Major Credit and Debit Cards, Net Banking, Cash Cards, Paytm, UPI, Paypal. Our payment gateways are 100% secure.
Check Delivery
Books by Same Author
15%
Engineering Chemistry
by Wiley India Editorial Team
15%
ENGINEERING CHEMISTRY
by WILEY INDIA EDITORIAL TEAM
15%
Kreyszig`s Applied Mathematics - II
by WILEY INDIA EDITORIAL
15%
Engineering Physics
by Wiley India Editorial
15%
KREYSZIG`S APPLIED MATHEMATICS-I
by WILEY INDIA EDITORIAL
Books of Similar Interest
10%
World Development Report 1990: Poverty
by
7%
Town Boy
by Lat
25%
Carte Blanche The New James Bond Novel
by Jeffery Deaver
12%
Electoral Systems
by Dipali Saha & A. Banerjee
22%
Anti Racist Baby
by Kendi, Ibram X.
Best Book Mart
Support

Call Us Phone : +91-9266663909
Email Us Email : support [at] bestbookmart.com
Working Hours Timing : 10:00 AM to 6:00 PM (Mon-Fri)
Powered By
CCAvenue
SSL Protection